MATH 512, SPRING 2022 HOMEWORK 3, DUE FRIDAY APRIL 22

Problem 1. Suppose that \mathbb{P} is a forcing notion that does not preserve stationary subsets of ω_1 . Show that there is a collection $\langle D_\alpha \mid \alpha < \omega_1 \rangle$ of dense subsets of \mathbb{P} , such that there is no filter $G \subset \mathbb{P}$ in the ground model that meets them all.

Remark 1. The above problem shows that we cannot have a forcing axiom for posets that are not stationary set preserving for subsets of ω_1 .

Recall that \mathbb{P} is proper if it preserves stationary subsets of $[\lambda]^{\omega}$ for all uncountable cardinals λ .

Problem 2. Show that any c.c.c forcing is proper.

Problem 3. Show that any countably closed forcing is proper.

Problem 4. Show that if \mathbb{P} is proper, then \mathbb{P} preserves stationary subsets of ω_1 .

Recall that q is (M, \mathbb{P}) -generic if for every maximal antichain $A \in M$, $A \cap M$ is predense below q (i.e. every $r \leq q$ is compatible with some $s \in A \cap M$).

Problem 5. Suppose that \mathbb{P} is a forcing notion and $q \in \mathbb{P}$. Let λ be large enough and $M \prec H_{\lambda}$ be such that $\mathbb{P} \in M$. Show that the following are equivalent:

(1) q is (M, \mathbb{P}) -generic.

(2) $q \Vdash ``G \cap M \text{ is a } \mathbb{P}\text{-generic filter over } M"$.